If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x-243=0
a = 2; b = 5; c = -243;
Δ = b2-4ac
Δ = 52-4·2·(-243)
Δ = 1969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{1969}}{2*2}=\frac{-5-\sqrt{1969}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{1969}}{2*2}=\frac{-5+\sqrt{1969}}{4} $
| 27+5x+3=90 | | y-4.2=4.2 | | P=(g-9)18” | | -8-7g=-8g | | y-4.2/3=1.4 | | 7.2x+4=6.2 | | 2x=16=5x=4 | | 4(c-94)=-28 | | (x+12)(2x+17)(x+8)(x+10)(x+7)(3x+23)(2x+16)=x | | 197=-y+78 | | 18x-8+5x+4=180 | | 4(h-65)-33=11 | | 8(t+57)+78=94 | | -w+198=45 | | 18x-54=8x+64 | | 100+8s=300 | | -5(y-74)+28=-67 | | 2(g+2)-5=7 | | 4x-2÷5-2=3 | | 4x-2÷5-2=8 | | x5-3=x+9 | | -1/5b-⅖=-2 | | x^2-1=-x+5 | | 2(g+2)−5=7 | | x+4=75/2 | | 1.3(x+7)=5 | | 3x+9/2=-10 | | 3x+9/2=10 | | P=(3s+4) | | 61-x=35 | | 73+x=82 | | (-56/f)=-7 |